
COGNITIVE SCIENCE Vol 23 (3) 1999, pp. 337–370 ISSN 0364-0213
Copyright © 1999 Cognitive Science Society, Inc. All rights of reproduction in any form reserved.

The Generality/Specificity of Expertise in
Scientific Reasoning

CHRISTIAN D. SCHUNN

George Mason University

JOHN R. ANDERSON

Carnegie Mellon University

Previous research on scientific reasoning has shown that it involves a diverse
set of skills. Yet, little is known about generality or domain specificity of
those skills, an important issue in theories of expertise and in attempts to
automate scientific reasoning skills. We present a study designed to test
what kinds of skills psychologists actually use in designing and interpreting
experiments and contrast expertise within a particular research area with
general expertise at designing and interpreting experiments. The results
suggest that psychologists use many domain-general skills in their experi-
mentation and that bright and motivated Carnegie Mellon undergraduates
are missing many of these skills. We believe that these results have impor-
tant implications for psychological and artificial intelligence models of ex-
pertise, as well as educational implications in the domain of science instruc-
tion.

I. INTRODUCTION

What are the reasoning skills required for making scientific discoveries? Research in
cognitive psychology has infrequently, although consistently, addressed variations of this
question since the advent of the cognitive revolution in the 1950s (e.g., Bruner, Goodnow,
& Austin, 1956; Dunbar, 1993; Klahr & Dunbar, 1988; Langley, Simon, Bradshaw, &
Zyktow, 1987; Mynatt, Doherty, & Tweney, 1977; Wason, 1960; Wason & Johnson-
Laird, 1972). One of the reasons that scientific reasoning has been studied infrequently is
its complexity—scientific reasoning involves a diverse collection of cognitive activities
rather than a single cognitive process. By contrast, one of the reasons for the long-lived
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interest in studying scientific reasoning is the importance of the process. Scientific
discoveries are often considered among the pinnacle achievements of humanity.

Although much of the validity in studying scientific reasoning processes lies in the
real-world nature of the task, it is an interesting fact that the great majority of psycho-
logical research on scientific reasoning has studied neither actual scientists nor used actual
scientific tasks. Instead much of the research has used undergraduates working on artificial
problems (e.g., Bruner et al., 1956; Klahr & Dunbar, 1988; Mynatt et al., 1977; Schunn
& Klahr, 1992; Wason, 1960), although a few studies have investigated real scientists
working on real scientific tasks (e.g., Dunbar, 1994; Kulkarni & Simon, 1988; Mitroff,
1974). Of course, there are many advantages to using undergraduates and artificial tasks,
and there are clear disadvantages to using actual scientists and actual scientific tasks. Two
important factors favoring the use of undergraduates and artificial tasks are the issues of
control and statistical power. On the issue of control, scientists are not typically available
to serve as subjects in the psychology lab, and their real-world environment is difficult, if
not impossible, to experimentally manipulate. Moreover, the knowledge and skills of the
scientist are not subject to control and frequently confound over-all intelligence with
domain-specific knowledge. Relating to the issue of statistical power, if one tries to study
scientists in their real-world setting, one almost inevitably winds up studying research on
a specific problem in a specific lab. It is difficult to know how to generalize from such
specific instances. Thus, studies of scientific reasoning have almost exclusively used
numerous undergraduates in the psychology lab (e.g., Dunbar, 1993; Klahr & Dunbar,
1988; Qin & Simon, 1990; Schunn & Klahr, 1995), or smallN, historical (e.g., Kulkarni
& Simon, 1988) or observational (e.g., Dunbar, 1994; Mitroff, 1974) studies of scientists
in their own environments.

Comparing results across these different study types could provide important informa-
tion about the generality of the findings. For example, from results within only one study
type, it is unclear which findings are general to all inductive reasoning tasks or all problem
solving tasks, which are specific to scientific reasoning, which are specific to scientific
reasoning in a particular scientific domain, and which are specific to only a few brilliant
researchers. However, it is difficult to know how to bridge across these study types
because they simultaneously differ on two important dimensions: the nature of the task
(e.g., its difficulty and familiarity) and the nature of the participant populations (e.g., their
general reasoning abilities and experience with research methods).

One approach to bridging these research traditions is to use a quasi-experimental design
that involves just one representative scientific reasoning task and systematically manip-
ulates various forms of expertise. This approach has two clear exemplars. The first such
study was Voss, Tyler, and Yengo’s (1983) study of scientific reasoning in political
science. They gave four groups of participants a political science problem relating to
agriculture in the Soviet Union: “Assume you are the head of the Soviet Ministry of
Agriculture and assume crop productivity has been low over the past several years. You
now have the responsibility of increasing crop production. How would you go about doing
this?” The groups differed along several dimensions of expertise. The first group of
participants were political science faculty whose domain of expertise was the Soviet
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Union. The second group consisted of political science faculty whose domain of expertise
was some other area (e.g., Latin America). The third group consisted of faculty from a
chemistry department. The final group consisted of undergraduates taking a course on
Soviet domestic policy.

Voss et al. (1983) found group differences at three different levels. First, they found
that both groups of political scientists spent a great deal of time developing a represen-
tation of the problem, whereas the undergraduates and chemists spent little time devel-
oping representations. Second, they found that both groups of political scientists proposed
only a few abstract solutions, whereas the undergraduates and chemists proposed a large
number of more concrete solutions. Finally, they found that the domain-expert political
scientists provided long argument chains in support of their solutions, whereas all other
groups provided only short argument chains. Thus, they found that ability to produce long
reasoning chains depends upon familiarity with the domain and that the skills of elabo-
rating problem representations and generating abstract solutions depend upon familiarity
with the task. It appears from these results that these skills are not general to all areas of
science: the chemists performed no differently than the undergraduates. However, it is
possible that the chemists possessed these skills, but simply did not have the supporting
knowledge to use the skills in this task.

A second, related study, conducted by Shraagen (1993), which used a problem from
sensory psychology. In this task, participants were told that the manufacturer of Coca Cola
wanted them to design a study to determine what people taste when they drink Coca Cola,
making comparisons to Pepsi Cola and another house brand. Four groups of participants
were used: domain-experts, who were psychology faculty working within the domain of
sensory psychology; design-experts, psychology faculty working in other areas of psy-
chology; intermediates, who were graduate students from other areas of psychology; and
beginners, who were undergraduates studying psychology.

Shraagen (1993) found that both groups of experts worked at the problem longer and
produced more solutions than did the other groups. More interesting, design-experts, like
domain-experts, used a much more systematic method for designing experiments than did
the intermediates or the beginners. In particular, from analyses of the verbal protocols,
Shraagen (1993) found that the experts were more likely to follow the general control
structure of moving from understanding the problem to selecting a research paradigm to
pursuing that paradigm to selecting design principles. Shraagen (1993) also found that the
two groups of experts shared two heuristics in common: mental simulation and progres-
sive deepening of the design. Yet, the domain-experts did differ from the design-experts
in one important way: the domain-experts produced much better solutions, as rated by
other domain-experts. In particular, it appeared that the design-experts produced solutions
that, while perfectly logical, were unlikely to work for various practical reasons.

Thus, from Shraagen’s (1993) study, one might conclude that domain expertise consists
merely of practical knowledge of what will work in the given domain and that there is
great generality to the skills of designing experiments. Interestingly, the heuristics of
mental simulation and progressive deepening design have also been found in program-
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ming expertise (Adelson, 1990; Adelson & Soloway, 1985), and thus it appears that they
are general to expertise in many areas other than science.

While the Voss et al. (1983) and the Shraagen (1993) studies have provided some
answers about the nature and generality of scientific reasoning skills, many questions
remain. First, those two studies identified only a few of the skills required for scientific
reasoning, all within the design process. Presumably a complex task, such as making
scientific discoveries, requires many more skills within the design process and within
other aspects. For example, there are also the processes of deciding how to measure and
plot the outcomes of experiments, interpreting the experimental outcomes, generating
hypotheses, and comparing results to hypotheses (cf. Schunn & Klahr, 1995). It would
also be interesting to know how general these skills are.

Second, the tasks used in the Voss et al. (1983) and Shraagen (1993) studies were not
typical scientific tasks, which usually have goals of obtaining new knowledge or theories
or testing existing scientific theories. Instead, they were more like engineering tasks
geared at obtaining practical outcomes. This issue raises the question of whether their
results would generalize to more typical scientific tasks. For example, previous studies
have found that people are less likely to conduct systematic experiments and to try to
identify the causal relevance of individual variables when they have an engineering goal
than when they have a science goal (e.g., Schauble, Klopfer, & Raghavan, 1991; Tschirgi,
1980). Thus, the lack of systematicity in the novices in the Shraagen (1993) study may be
due to those participants mistakenly interpreting the task as an engineering task.

Third, the Voss et al. (1983) and Shraagen (1993) studies did not provide any
opportunities for the participants to make use of feedback. Scientists in the real world rely
on the ability to test their ideas empirically and to iteratively attack a problem (Tweney,
1990)—scientific questions are rarely answered in one experiment and especially not the
first one. With a small amount of feedback (e.g., being presented with the outcomes of
experiments), the task-experts in Shraagen’s (1993) study may have developed much
better experiments. Alternatively, with feedback, the domain-experts in the Voss et al.
(1983) study may have demonstrated some procedural differences from the task-experts.

The current study was designed to address these issues. As with the Voss et al. (1983)
and Shraagen (1993) studies, our study contrasts domain-experts with task-experts and
task-novices. However, in contrast to the two previous studies, the current study had three
new features. First, it uses a more typical scientific task of trying to distinguish among two
general theories regarding an empirical phenomenon. Of course, no task can represent all
sciences equally, and our task will be most representative of the scientific methodology
used in psychology. Second, it makes use of a new computer interface that allows subjects
to see the results of their experiments and to design multiple experiments based on the
feedback they receive. Third, this study investigates the processes by which the partici-
pants examined the experimental outcomes.

Three general questions were at issue in our study and will shape the analyses and
discussion of the results. First, is there a general set of skills that scientists use in designing
and interpreting experiments? It may be that there are relatively few general skills that
hold true across domains, or even across scientists. Such a paucity would explain why
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previous studies have not described a greater number of general skills. That is, it may be
that the majority of skills required for scientific reasoning are domain specific. For
example, outcome interpretation skills may consist primarily of recognizing familiar
patterns found within that domain.

Second, of the domain-general skills that do exist, are these general skills unique to
scientists, or would any intelligent, motivated individual possess them? The abundance of
studies that investigate scientific reasoning skills using undergraduate populations suggest
that many psychologists believe that scientific reasoning skills can be found in non-
scientists as well. Consider, for example, the skill of systematically investigating the
causal relevance of different variables, a skill at which most scientists are likely to be
proficient. While some adults and children may not have mastered this skill, it may be that
many well-educated adults are proficient at systematic, causal investigation. For example,
Kuhn (1991) found that students at college-track schools had much better basic scientific
reasoning skills than did students at vocational-track schools, and that age (14–60 years)
had little impact. One goal of our study is to examine the empirical generality of these
basic reasoning skills, and thus provide important information about the nature and origins
of these skills.

Third, assuming there are both domain-general skills and domain-specific skills, is the
empirical generality of these skills easily predicted by a task analysis (or simple symbolic
model)? According to the Singley and Anderson (1989) Identical Elements theory of
transfer, skills should transfer across domains and tasks to the extent to which the domains
and tasks share those skills. However, it may be that skills that logically should generalize
do not transfer because they require supporting domain-specific knowledge. For example,
the Investigate-Surprising-Phenomena heuristic proposed by Kulkarni and Simon (1988)
requires domain-specific expectations to elicit a surprise response. As another example,
Shoenfeld (1985) found that success in applying Polya’s general problem solving heuris-
tics depended on knowledge about the mathematical domain. Additionally, many recent
theories of learning and transfer have proposed that transfer of knowledge and skills is a
non-trivial matter (e.g., Clancey, 1993; Greeno, 1988; Lave, 1988; Suchman, 1987). For
example, task-experts may not be able to transfer their general skills because the current
task is not situated in their familiar domains.

Alternatively, it may be that there are domain-specific skills that are very easily
acquired. That is, rather than requiring years of domain-specific experience, many of the
domain-specific skills in scientific reasoning may be logically deduced or readily acquired
with minimal feedback. Such a finding would be consistent with a general reasoning
ability view of expertise and inconsistent with current theories of expertise, which assume
that expertise consists primarily of domain-specific knowledge that requires years of
experience to master (Ericsson, Krampe, & Tesch-Ro¨mer, 1993; Gobet & Simon, 1996).

The design of the current study was to contrast domain-experts with task-experts and
task-novices on a novel problem from within the domain-experts’ domain. We selected a
problem that simultaneously satisfied three constraints: 1) the solution must be unknown
to the domain-experts because science involves the discovery of previously unknown
solutions; 2) the problem must be free of domain-specific jargon and easily understandable
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to even task-novices; and 3) the solution must be obtainable through experimentation. We
found a problem from within the domain of cognitive psychology that seemed to meet
these three constraints. It particular, the problem that we gave the participants was to find
the cause of the spacing effect in memory—that items with longer intervening intervals
tend to be better remembered.

The structure of our study was to give domain-experts, task-experts, and task-novices
a step-by-step introduction to the spacing effect, as well as two theories about the cause
of the spacing effect. The participants’ goal was to develop experiments that could
determine which explanation of the spacing effect was correct. The participants used a
computer interface to design the experiments. The interface provided a set of variables that
could be manipulated, as well as the facility to easily conduct factorial-design experi-
ments. The use of the computer interface allowed the participants to observe the outcomes
of their experiments by embedding a mathematical model of memory consistent with
existing research into the interface. Additionally, the computer interface produced a rich
keystroke protocol that provided detailed information about how the participants designed
and interpreted their experiments.

Distinctions of Expertise

Before turning to the experiment, a few words regarding the types of expertise that were
being considered are in order. Both the Voss et al. (1983) and Shraagen (1993) research
distinguished between expertise at the task of doing science and expertise in a particular
scientific domain (e.g., political science, chemistry, or sensory psychology). Although this
distinction has intuitive appeal, its underlying theoretical distinction requires further
specification, especially if testable predictions are to be made. Moreover, it is yet
unspecified how this distinction could be captured mechanistically or computationally.

One distinction from the philosophy, psychology, computer science, and neuroscience
literature that provides further theoretical illumination to this issue is the procedural/
declarative distinction (Anderson, 1976; Cohen & Squire, 1980; Ryle, 1949). Declarative
knowledge is characterized by knowledge that people can report or describe (i.e., knowing
that), whereas procedural knowledge is characterized by knowledge that appears in
performance but cannot be reported (i.e., knowing how). There are many other behavior
differences associated with this distinction (Anderson, 1976, 1983, 1993), and some
researchers have argued for neurophysiological differences in their underlying represen-
tations (e.g., Cohen & Squire, 1980). Computationally, this distinction can be captured
within a production system such as ACT-R (Anderson, 1993; Anderson & Lebiere, 1998).
Specifically, procedural knowledge is embodied in productions, and declarative knowl-
edge is embodied in declarative memory chunks.

One can conceive of the process of scientific reasoning as applying two types of
reasoning procedures to two types of declarative knowledge. One type of declarative
knowledge represents the specific scientific problem being attacked, its specification, and
the results of specific experiments. If the problem is a novel problem, the problem-specific
declarative knowledge will inherently be new to everyone, domain-novice or domain-
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expert. The other kind of declarative knowledge is background knowledge that is privy to
experts in the domain (e.g., chemical formulas, results of similar experiments, etc.). The
procedures will also be of two types: some of the scientific reasoning procedures will be
domain general (e.g., how to read a table), whereas others may be domain specific (e.g.,
knowing how to do chemical titration). It is important to note that domain-general
procedures will fail to be applied across domains if they depend upon domain-specific
knowledge.

The goal of our research was to determine whether there are domain-general proce-
dures that expert scientists from different domains share, but are not found in all educated
adults (i.e., are acquired as a result of detailed training and practice in a domain, but are
still shared across domains). This was determined by comparing performance across
domain-experts, task-experts, and undergraduates (task- and domain-novices). The as-
sumption was that the domain- and task-experts would differ only in terms of domain-
specific knowledge and domain-specific procedures, whereas the task-experts will differ
from the undergraduates in terms of domain-general procedures. Predictions for particular
skills will be made by considering the type of knowledge and procedures that they require.

An important caveat is that expertise is not dichotomous. Although for experimental
reasons expertise is typically treated as a dichotomous variable, expertise in science, as in
most domains, is a continuum of gradually accumulated knowledge and skill (e.g., child
to adolescent to undergraduate student to graduate student to postdoc to faculty member).
Moreover, the generality of the skills and knowledge are also more of a continuum than
a dichotomy. For example, some task skills, such as knowing how to calibrate a particular
instrument, are specific to a very narrow subdomain, whereas other task skills, such as
multiple regression statistics, are general to a number of domains, and others still, such as
knowing to avoid confounded variables, are general to all areas of science. Similarly,
some knowledge, such as the size of a particular star, is useful in a narrow subdomain,
whereas other knowledge, such as the chemical composition of water, is useful in many
domains.

In our experiment, we focused on the extremes of generality: skills that are expected
to be general to most if not all science versus skills and knowledge that are expected to
be specific to a particular subarea within cognitive psychology. This focus minimizes the
ambiguity of predictions as wells as maximizes the generality of the skills that are found.

II. METHODS

Participants

There were three categories of participants: cognitive psychology faculty who have done
much of their research in the domain of memory (Domain-Experts;n 5 4), social and
developmental psychology faculty who have done very little or no research related to
memory (Task-Experts;n 5 6), and undergraduates (n 5 30) from a variety of engineer-
ing, physical science, social science, and arts backgrounds.1 The undergraduates were all
from Carnegie Mellon University and participated for course credit. The Domain-Experts
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and Task-Experts were a mix of senior and junior faculty with prolific publication records
at strong research universities. The Domain-Experts and Task-Experts were well matched
on a variety of background measures: the two groups did not differ significantly in the
number of years since earning a PhD (17.5 versus 13.0,t(8) 5 0.8, p . .45), number of
journal publications (41.0 versus 36.0,t(8) 5 0.3, p . .7), number of non-journal
publications (27.5 versus 21.5,t(8) 5 0.6,p . .5), and number of publications in the year
preceding this study (3.0 versus 3.0,t(8) 5 0, p . .99). However, there were large
differences in the number of publications on the topic of memory (20.0 versus 1.5,t(8) 5
5.8, p , .0005).

We expected the Domain-Experts alone to display skills specific to the task of studying
memory and only the Domain-Experts and Task-Experts to display skills general to the
task of conducting scientific experimentation. However, it is possible that some of the
skills may be so general such that all groups would display the domain-general skills.
Moreover, it is possible the Domain-Experts, Task-Experts, and only the brighter under-
graduates would display the domain-general skills. Thus, as will be explained in further
detail later, the undergraduates were divided into two groups according to ability.

Materials and Procedure

At the beginning of the experiment, the undergraduate participants were given a back-
ground questionnaire regarding 1) their current and previous psychology courses; 2) the
number of courses, including high school, in physics, biology, chemistry, mathematics,
computer science, philosophy, social and decision sciences, and architecture and engi-
neering; 3) the number of lab courses; 4) their math and verbal SAT scores; and 5)
whether or not they had taken part in a research project previously.

Next, all the participants were given a step-by-step introduction into the main task on
the computer. The participants read the instructions aloud to familiarize themselves with
talking aloud and to insure that they read all the instructions. The instructions began with
an introduction to the simple form of the spacing effect—that spaced practice produces
better memory performance than massed practice.2 The participants were then told that
their main task was to design experiments to discover the cause of the spacing effect. The
spacing effect was chosen as the target problem because it is 1) simple to describe, 2) easy
to understand, and 3) the cause yet unknown even to experts in the field of memory.

There are two common theories for the cause of the spacing effect. These theories were
simplified and presented to the participants as possible causes of the spacing effect. The
first theory was the shifting context theory, which stated that memories were associated
with the context under study and that context gradually shifted with time. Under this
theory, the spacing effect occurs because spaced practiced produces associations to more
divergent contexts, which in turn are more likely to overlap with the test context. This
theory is consistent with associative models of memory such as SAM (Gillund & Shiffrin,
1984; Raaijmakers & Shiffrin, 1981) and Landauer’s random walk model (Landauer,
1975).

The second theory was the frequency regularity theory, which stated that the mind
estimates how long memories will be needed based on regularities in the environment and,

344 SCHUNN AND ANDERSON



in particular, adjusts forgetting rates according to the spacing between items. Under this
theory, items learned with short intervening spaces are forgotten quickly because they
need not be remembered for very long, whereas items learned with long intervening
spaces are forgotten more slowly because otherwise they would be forgotten before they
were needed again. In other words, it is assumed that when items do not appear after a long
delay since their last appearance, it is less likely that they will ever appear again, if they
previously appeared with short intervening delays than if they previously appeared with
long intervening delays, and it is assumed that the mind is adjusting forgetting rates to
reflect these expectations about information being needed again. This theory is consistent
with rational models of memory (e.g., Anderson & Schooler, 1991).

After the introduction to the spacing effect and the two theories for its cause, the goal
of the main task was given: to discover whether either, neither, or both of the two theories
about the cause of the spacing effect are correct. To achieve this goal, the participants
were asked to design experiments. Because we were interested in the process by which
people interpreted data in addition to how they designed experiments, we built a computer
interface, called the Simulated Psychology Lab, that produced simulated experimental
outcomes and allowed participants to iterate through the process of designing and
interpreting. The interface supported factorial experimental designs because that was the
most common design generated by Domain-Experts and graduates students in pilot
experiments.

Within the interface, participants designed experiments by selecting values for six
independent variables. Participants could simultaneously manipulate up to four of the
independent variables in any one experiment. The participants were told that the computer
had been given the results of many actual experiments, and that it would show them the
results of whatever experiment they generated. The six independent variables were
divided into three variables of the source or study task and three variables of the test
situation. All the manipulations would be between groups, and the basic task consisted of
studying lists of words.3

The source task variables that the participants could manipulate were 1) repetitions, the
number of times that the list of words was studied (2, 3, 4, or 5 times); 2) spacing, the
amount of time spent between repetitions (from 1 min to 20 days); and 3) source context,
whether the participants were in the same context for each repetition or whether they
changed contexts on each repetition (either by changing rooms or by having their moods
manipulated). The test variables included 1) the test task, free recall, recognition, or stem
completion; 2) delay, the amount of time from the last study repetition until the test was
given; and 3) test context, whether the participants were in the same context or a different
context at test relative to study (either by changing rooms or having moods manipulated).4

Figure 1 shows the six variables that could be manipulated and their current settings as
they appeared on the screen. In this example, the experiment is only partially specified,
with only the repetitions and spacing variables determined. Repetitions was not manipu-
lated (it was held constant at 3) and spacing was manipulated (5 min versus 20 min). An
experiment was not complete until values for all six variables were specified.
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The six variables that the participants could manipulate were ones that were produced
in a pilot task involving the free generation of experiments on paper. Although the
mapping of the two theories for the spacing effect onto these six variables is not simple,
this relationship between theory and operational variable is typical of most psychological
theories and experiments. Of interest in this study was how the participants would make
the mapping from the theories onto these variables.

Participants selected variable settings by clicking on sliders and scrolling lists by using
a mouse. Figure 2 provides an example of how values were selected for the source context
variable. The slider on the left was used to select whether the variable was held constant
across subjects (by setting it to 1; Figure 2A) or whether the variable was manipulated (by
setting it to 2 or 3; Figure 2B). Values for repetition were selected using a slider that varied
from 2 to 5. Values for context and test task were selected from a scrolling list of three
options. Values for spacing and delay were selected by using a slider (which varied from
1 to 20) and a scrolling list of units (minutes, hours, or days). Thus, almost 400,000 unique
experiment settings could be generated. Values had to be selected for all six variables,
including the variables that were held constant in the given experiments; no default values
were used. There was no restriction on the order of variable selection, and participants
could go back to change their selections for any of the variables at any point in time until
they selected to run the experiment.

Participants could only vary up to four variables simultaneously in any given experi-
ment. A schematic of the size of the current design was displayed, and this was replaced
with a “Too many factors!” warning if the participants tried to manipulate more than four
variables at once. The restriction to only four variables was a practical consideration of
being able to plot experiment outcomes; however, we were interested in whether the
participants would seek to design experiments with more than four manipulated variables,
and thus we did not inform the participants of the restriction in advance.

Figure 1. The interface used to display the variables that could be manipulated and their current
settings in the experiment being designed.
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The participants made predictions and were given outcomes in a table format, with all
cells being shown at once. Tables rather than graphs were used because we thought that
tables were easier for undergraduates to understand and manipulate. Before being given
the table, participants had to select on which dimension each manipulated variable would
be plotted (i.e., rows, columns, across tables vertically, or across tables horizontally). This
choice was presented by using a schematic table with the correct number of dimensions
for the current experiment and a button associated with each dimension. Participants made
a selection for each dimension by clicking on the associated button and selecting from a
provided list of the manipulated dimensions.

After choosing the table structure, participants predicted the mean percent correct for
each cell in the design. Although this prediction task is more stringent than the prediction
task psychologists typically give themselves (i.e., directional predictions at best, and
rarely for all dimensions and interactions), we used this particular form of a prediction task
because 1) assessing directional predictions proved a difficult task to automate; 2)
numerical predictions could be made without explicit thought about the influence of each
variable and possible interactions, and thus we thought it was less intrusive; 3) it provided
further data about the participants’ theories and beliefs about each of the variables; and 4)

Figure 2. The interface used for selecting how many levels of a independent variable and the values
for each level. A) Only one level is selected (i.e., this variable is held constant), and the constant value
is “Same”. B) Two levels are selected (i.e., this variables is manipulated), and the values are “Same” and
“DifferentRooms”.
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it provided some cost to large experimental designs (i.e., many more predictions to make)
to simulate the increasing real-world cost of larger experimental designs.5 During the
prediction phase, participants could choose to redesign the experiment (or re-assign
variables to the table dimensions). To the right of the prediction table, the values for the
variables held constant were displayed as well (see Figure 3).

After completing their predictions, the participants were shown the results of their
experiment. The same table format was used, including the display of the variables held
constant and their values (see Figure 4). In addition, the outcome tables also displayed the
participant’s predictions in italics for each cell. To facilitate comparison across rows,
columns, and tables, the row, column, and table marginals were also provided. To provide
a rough evaluation of the quality of the predictions, the participants were also shown the
Pearson correlation between the predictions and outcomes. Figure 4 also illustrates the key
results in this task: the effects of spacing and delay, and their interaction (the drop-off with
increasing delay is faster at smaller spacings), and the lack of an effect of source context.

To be roughly consistent with results from research on memory and the spacing effect,
the following underlying model of memory was used to produced the experiment out-
comes. Memory performance decreased as a power-function of Delay, in which the decay
constant was an inverse power-function of Spacing, i.e., the spacing effect was roughly

Figure 3. The interface used for making predictions. In this example, predictions have been entered
for the majority of the cells (zero is the default value). Test Delays are in the columns, Source Spacings
in the rows, and Source Contexts across tables. The value currently being entered is in bold type.

348 SCHUNN AND ANDERSON



consistent with the frequency regularity theory. Repetitions produced a very small,
additive increase. Source Context had no effect on performance (ruling out the shifting
context theory), whereas Test Context had a moderate additive effect (same context
produced better performance than did different contexts, with different moods producing
the worst performance). Performance for the recognition and recall test tasks was nearly
identical, with recall performance merely being .9 of recognition performance. Stem
completion, being an implicit test of memory, was not influenced by spacing. In sum, five
of the six variables had an effect, and there were two significant interactions (Spacing3
Delay and Spacing3 Test Task). To simulate noise in the data, between 0% and 2% were
added to or subtracted from each cell, with 0% and 1% noise being twice as likely as 2%.

While designing experiments, the participants also had the option of viewing the
outcomes of previous experiments. Previous experiments were accessed by their experi-
ment number and were displayed with all the same information of the original outcomes
tables minus the predictions. However, as an additional memory aid, participants were
also given paper and pen. They were instructed that the computer would keep track of all
the experiments and outcomes, but that they were free to use the paper and pen as they wished.

Participants worked at the task-iterating through the process of experiment design,
choosing a table structure, making predictions, and viewing outcomes until they felt that

Figure 4. The interface used for displaying the outcomes of experiments. Actual outcomes are the
main entry in each cell. Predicted outcomes are in italics. The r-value is the Pearson correlation between
the predictions and actual outcomes.
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they had found out what the cause of the spacing effect was or 40 min had elapsed. The
primary data gathered in this experiment were keystroke data as the participants generated
experiments, chose the table structures, and interpreted experiments. However, the par-
ticipants were also asked to give a think-aloud verbal protocol throughout the task
(Ericsson & Simon, 1993). Moreover, at the end of the task, participants were asked to
verbally report their conclusions about the spacing effect, i.e., whether the Shifting
Context theory, Frequency Regularity theory, both theories, or neither theory explained
the spacing effect. The participants were also asked to give conclusions about the effects
of each of the six variables.

III. RESULTS AND DISCUSSION

Overview

The goal of these analyses was to examine the presence and absence of domain-specific
skills and knowledge (specific to the domain of the cognitive psychology of memory) and
domain-general skills (general to most sciences). The skills were divided into three
general classes: designing an experiment, making predictions, and interpreting outcomes.
Skills were also divided into domain-general (skills expected to be useful at least generally
in psychology) and domain-specific (skills expected to be useful only in memory exper-
iments). Table 1 presents a full list of the skills. As it turned out, all the domain-specific
skills happened to be experiment design skills, not because others do not exist, but simply
because those proved to be the only ones that could be reliably assessed within this task.
The differential representation of skills from the design, predict, and interpret categories
(and the lack of skills associate with choosing a table structure) similarly reflects the
degree to which such skills could be reliably assessed in the given task rather than the
actual number of such skills associated with those types of activities in general.

To make predictions for each skill as to whether it was likely to be domain-general or
domain-specific, productions implementing the skill were developed. If the production
seemed applicable to scientific domains other than psychology and did not retrieve (i.e.,
require matching to) declarative knowledge specific to the cognitive psychology of
memory, then the corresponding skill was classified as general. By contrast, if the
production had to be written in such a way that it seemed applicable to only the cognitive
psychology of memory or retrieved declarative knowledge specific to that domain6, then
the corresponding skill was classified as specific. English forms of the productions are
listed in Table 1. A full production system model of this task that implements these skills
and the many others required to do this task has been implemented in ACT-R. A detailed
description of this model can be found in Schunn and Anderson (1998). In this detailed
model, the only feature of importance to the current discussion is that some of the English
productions listed in Table 1 actually correspond to many productions in the model (e.g.,
encoding main effects and interactions).

To test these predictions of generality (i.e., examine the empirical generality of the
skills), we structured each of the analyses by contrasting performance for each of the
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participant groups. We predicted that the Domain-Experts alone would display the
domain-specific skills and that both the Domain-Experts and Task-Experts would display
the domain-general skills. However, it is possible that some of the skills may be so general
that all groups would display the domain-general skills, especially because all of the
undergraduates have had at least some science instruction.

The comparisons between the Task-Experts and undergraduates is likely to confound
two factors: task expertise and general reasoning ability. To examine the influence of

TABLE 1
List of Skills Examined by Skill Type and Skill Level, Along With English Form of

Productions That Implement Them

Skill Production

Design
General Design experiments to test the

given theories
If given theories to test, then set goal to test

some aspect of theory.
General Keep experiments simple If variable is not relevant to hypotheses under

test, then hold variable constant.
General Use sensible variable values

(sufficient range) If have multiple values to choose, then pick values
that are far apart.

(non-decreasing intervals) If choosing third value of a variable, then choose
equal increment as between first and second
values.

(minimal complexity) If manipulating a variable, then choose simple,
canonical manipulations.

General Keep general settings constant
across experiments

If not varying a variable, then pick the same value
as used in the previous experiment.

Specific Avoiding floor and ceiling
effects

If choosing a variable value and know that value
will produce very high or very low performance,
then do not choose that value.

Specific Knowledge of variables likely
to interact

If testing a memory phenomenon, then consider
varying test task.

Specific Choose variable values useful
in the given domain

If selecting a value for delay, then pick a value in
the same range as the value selected for
spacing.

Predict
General Make caricature predictions of

interactions
If predicting an interaction, then consider only

canonical qualitative interactions.
Interpret

General Make conclusions in light of
theories under test

If finished encoding the results of an experiment,
then relate results to theories under test.

General Use evidence in support of
conclusions about theories

If making a conclusion about a theory, then
present supporting evidence from empirical
results.

General Encode main effects If mean outcome for level 1 is significantly
different than mean outcome for level 2, then
conclude there is a main effect.

General Encode interaction outcomes If the effect of variable X is significantly different
at different levels of Y, than conclude there is
an interaction.

General Ignore small noise levels in
data

If an effect or interaction is very small, then
ignore it.
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reasoning ability skills, the undergraduates were divided into two groups by using a
median-split on Math SAT, a factor found to be predictive of performance in this domain
and other scientific reasoning tasks (e.g., Schunn & Klahr, 1993). If the differences
between the undergraduates and the Task-Experts were due only to task expertise, then
there should be no differences between the two groups of undergraduates. Those under-
graduates above the median (660) were called High-Ability undergraduates (n 5 14,
mean5 728) and those below were called Mid-Ability undergraduates (n 5 16, mean5
586). Because our undergraduates all had Math SATs above the US national median, we
used the label Mid rather than Low to aid future comparison to studies conducted with
other populations. The two groups did not differ significantly in terms of mean Verbal
SAT (613 versus 620) or number of psychology courses (0.4 versus 0.4), science courses
(7.2 versus 6.0), or lab courses (1.4 versus 2.8). But, the Math SAT difference was
associated with a difference in major subject of study when using the four divisions of
Computer Science, Engineering, or Math (6 High versus 1 Mid); Arts (2 versus 3);
Humanities (3 versus 7); and Science (3 versus 3).

Along these lines, the results will be presented in figures in which the x axis lists the
participant groups in the order Domain-Experts, Task-Experts, High-Ability undergrad-
uates, and then Mid-Ability undergraduates. The statistical analyses focused on three
comparisons: Domain-Experts versus Task-Experts, Domain- and Task-Experts versus
High-Ability undergraduates7, and High-Ability versus Mid-Ability undergraduates. We
expected that 1) all the experts would be near the ceiling on all the domain-general skills;
2) the two groups of experts would differ only on domain-specific skills; and 3) that the
experts and undergraduates would differ on the domain-general skills. The contrast
between the High- and Mid-Ability undergraduates provided a test of whether any
observed differences between experts and undergraduates could be attributed to differ-
ences in general reasoning ability.

Because there were many measures being examined, we will not describe the details of
the statistical tests in the prose whenever figures are presented. Instead, the figures will
indicate which of the pair-wise comparisons reached statistical significance. A mark
indicates that the group’s performance on that measure differed significantly from the
group immediately adjacent. Three levels of significance were used: *** forp , .01, **
for p , .05, and * forp , .2. The nontraditionalp , .2 is included for two reasons. First,
the expert groups were small, and so comparisons involving those groups have relatively
low power, and thus traditional cutoff values would lead to unacceptably high probabil-
ities of type-II errors. Such a high rate of type-II errors would be particularly grievous here
because the key predictions are for no differences between Domain- and Task-Experts
on domain-general skills. Second, of particular interest was the trend analyses across
skills in which the existence or non-existence of many marginal results could prove
telling. Fisher Exact tests were used for binary variables andt-tests were used for
continuous variables.

Before examining the results from the skill-specific analyses, we begin with three
general results regarding the overall performance of the groups. First, there is the
performance on the overall goal of the discovery task: to determine which theory of the
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two (Frequency Regularity and Shifting Context) provides a good explanation for the
spacing effect. The memory model built into the interface was strongly inconsistent with
the Shifting Context theory and generally consistent with the Frequency Regularity theory.
We coded the participants’ final conclusions to examine whether the participants were
able to discover and correctly interpret these results. One point was given for accepting a
theory, zero points for no conclusion, and -1 for rejecting the theory.8 Figure 5 presents
the means for each group on each theory. Somewhat surprisingly, the undergraduates were
more likely than the experts to accept the Frequency Regularity theory. This occurred
because there were several results that were inconsistent with the Frequency Regularity
theory, and the experts were more likely to notice these inconsistencies: 1) the Frequency
Regularity theory implies an added advantage of exact matches of delay to spacing, which
did not occur; and 2) the Frequency Regularity theory could not explain why there was no
spacing effect for the stem completion test task. For the Shifting Context theory, the
Domain-Experts all discovered that this theory was incorrect, whereas far fewer of the
other participants were able to come to this conclusion.

Turning to time-on-task, the three groups spent approximately an equal amount of time
to complete the task (36.0, 38.0, 36.3, and 34.0 min for the Domain-Experts, Task-
Experts, High-Ability, and Mid-Ability undergraduates, respectively,ps . .5). However,
Domain-Experts conducted marginally fewer experiments (2.8) than did the Task-Experts
(4.8;p , .2), who in turn conducted about as many experiments as the undergraduates (5.6
and 5.7, respectively;p . .6). As we shall see below, this occurred because the
Domain-Experts conducted a small number of complex experiments, whereas the other
groups conducted a larger number of simple experiments.

Figure 5. Mean acceptance score for each group for each of the two theories. ***, p , .01; *, for p ,
.2.

353EXPERTISE IN SCIENTIFIC REASONING



Design—Domain-General Skills

In designing an experiment, the participants had two basic tasks: deciding which variables
to vary and what values to use for each variable. There were also two kinds of skills: skills
directly relevant to testing the given theories and practical rules-of-thumb.

Design Experiments to Test the Given Theories.Using the verbal protocols, we
classified the participants according to whether or not they mentioned either of the two
theories (Frequency Regularity and Shifting Context) during the course of design exper-
iments, either during the first experiment or during any experiment. Note that this is a very
lax criterion for measuring the use of theories in experiment design—the theory need only
be mentioned in passing. All of the Domain-Experts and Task-Experts mentioned the
theories, starting with the very first experiment (see Figure 6). However, only 64% of the
High-Ability undergraduates and 6% of the Mid-Ability undergraduates mentioned the
theories duringany of the experiments, significantly fewer than the Task- and Domain-
Experts.

Were these references to the theories correlated with the use of the theories to guide
experiment design? It is possible that the Experts only mentioned the theories but did not
use them, and the undergraduates used the theories but did not name them directly. To
examine this issue, the variables manipulated in the undergraduates’ first experiment was
analyzed as a function of whether or not they mentioned the theories (see Figure 7A).
These two groups of undergraduates ran rather different first experiments—the two
profiles correlated onlyr 5 .13. The undergraduates who mentioned the theories focused
on the Source Context, Spacing, and Delay variables; the variables that are most obviously
relevant to the theories. By contrast, the undergraduates who did not mention the theories

Figure 6 The percentage of participants in each group who mentioned the theories during experiment
design in the first experiment or in any experiment. ***, p , .01; **, for p , .05.
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primarily varied Repetitions, the upper-leftmost variable in the interface. Moreover,
relative ordering of variable use in this group is highly suggestive of a left-to-right,
top-to-bottom strategy, which is much more consistent with simply varying variables
without regard to their relevance to the theories.

Figure 7B presents the corresponding variable use in the first experiment for the
Domain- and Task-Experts, who all mentioned the theories in their first experiment. While
the Experts focused on different variables than did the undergraduates, perhaps reflecting
different views of what variables were relevant to the theories, the Experts did prefer
Spacing and Source Context (the variables of obvious relevance) and avoided Repetitions,

Figure 7. Proportion of participants varying each of the variables in the first experiment. A) Under-
graduates only as a function of whether or not they mentioned the theories in their first experiment.
B)Domain- and Task-Experts.
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the variable of least apparent relevance of the theories. The two Expert profiles correlated
r 5 .52 with one another andr 5 .58 (Domain-Expert) andr 5 .23 (Task-Expert) with
the theory-oriented undergraduate profile. The Expert profiles correlated poorly with the
non-theory-oriented undergraduate profile (r 5 2.47 andr 5 .00 for the Domain-Expert
and Task-Expert profiles, respectively). Differences between the Experts on variable
selections will be discussed further in a later section. Overall however, it appears that all
the Experts knew that theories should be used to guide experiment design, whereas many
of the High-Ability and almost all of the Mid-Ability undergraduates did not.

Keep Experiments Simple (when necessary).One general principle of experiment
design is to keep experiments simple, especially as a first approach. Figure 8 presents the
mean experiment complexity, defined as the mean number of cells in the design of each
experiment, for participants in the various groups. The Domain-Experts designed more
complex experiments than did the Task-Experts, and the High-Ability undergraduates
designed more complex experiments than did the Task-Experts. The High- and Mid-
Ability undergraduates produced equally complex experiments. These differences are
reflected in both the number of variables that the participants manipulated (Task-Experts
manipulated two or fewer variables, the other groups manipulated two or more variables)
and the number of levels per manipulated dimension (Task-Experts typically included
only two levels in their manipulations, the other groups included two or three levels
equally often). Moreover, half of both undergraduate groups attempted to design exper-
iments with more than four factors, whereas none of the Task-Experts attempted such
complex designs. Thus, it appears that Domain-Experts do not need to keep experiments
simple and that undergraduates do not know that they should keep experiments simple.

Use Sensible Variable Values.There are several general heuristics that one can use in

Figure 8. Mean number of factorial design cells per experiment in the first experiment and across all
experiments. ***, p , .01; **, p , .05; *, for p , .2.
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selecting values on the various dimensions. First, one should avoid very weak manipu-
lations (insufficient range). In this task, selecting two repetitions values that are adjacent
(e.g., 2 and 3, or 4 and 5) violates this heuristic. Second, when selecting three values on
an interval dimension, the difference between the first and second interval should not be
larger than the difference between the second and third interval (because noise values on
psychological measures typically increase as the raw value increases). In this task, this
constraint can be violated within the repetitions (by selecting 2, 4, 5), spacing, and delay
variables. Third, manipulations should be as simple as possible. In this task, when
selecting pairs of values for the spacing and delay variables, it is better to use the same
numerical value and vary the unit (e.g., 1 hr versus 1 day) or vary the value and use the
same unit (e.g., 5 min versus 15 min) than it is to vary both simultaneously (e.g., 2 min
versus 5 days). Both groups of undergraduates were significantly more likely to violate all
three of these heuristics (mean violation rate of .38 and .33 for the High- and Mid-Ability
groups, respectively) than were the Experts, who never violated these heuristics (see
Figure 9).

Keep General Settings Constant across Experiments.Another general heuristic of
experimental design is to use the same constant values across experiments (Schauble,
1990; Tschirgi, 1980). It makes comparisons across experiments easier, and it capitalizes
on the success of previous experiments. Violations of this heuristic were counted by
examining the situations in which a variable was not manipulated in consecutive exper-
iments and then determining whether the same constant value was used in both experi-
ments (e.g., hold repetitions constant at 2 across multiple experiments). Three measures of
the tendency to keep values constant were considered: whether the participant ever

Figure 9. The percentage of participants in each group making value selections that violate three
domain-general heuristics. ***, p , .01.
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changed more than one unmanipulated variable value (i.e., minor violations), whether the
participant ever changed more than two values, and whether the participant ever changed
more than three values (i.e., major violations). Across the different measures of value
variation, the Domain-Experts, Task-Experts, and High-Ability undergraduates did not
differ significantly (see Figure 10). By contrast, the Mid-Ability undergraduates were
significantly higher on all measures of value variation, with almost one third of them
varying three or more constant values, suggesting that many of them did not understand
this heuristic.

Design—Domain-Specific Skills

Knowledge of Potentially Interacting Variables.Although the principle of manipulating
variables that are likely to interact with the variables of interest is likely to be a
domain-general one, knowledge of which variables may interact is domain-specific.
Within this task, one variable serves as a good test of this knowledge: test task. To
non-domain-experts, there is no clear relevance of test task to the testing the two theories.
However, domain-experts in this area know that many results do vary with test task (e.g.,
implicit tasks, such as stem completion, versus explicit tasks, such as free recall), and so
it is important to examine the interactions of the other variables with test task. As
expected, Domain-Experts were found to manipulate test task more often than did
Task-Experts, in both the first experiment or during any experiment (see Figure 11).
Moreover, for all variables, Domain-Experts were more likely than Task-Experts to study
the interaction with test task.

Figure 10. The percentage of participants in each group varying more than one, two, or three values
from one experiment to the next. *, p , .2.
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Choose Variable Values Useful in the Given Domain.In this particular memory
domain, there is a domain-specific heuristic useful for selecting values: the spacing values
should be in the same range as the delay values (because the Frequency Regularity
theories makes important predictions in the overlap case). The participants’ experiments
were coded as to whether they ever violated this heuristic. Domain-Experts never violated
this heuristic, whereas Task-Experts and both groups of undergraduates frequently vio-
lated this heuristic (see Figure 12).

Avoid Floor and Ceiling Effects.In designing experiments, it is a good heuristic to try
to avoid floor and ceiling effects because they make the interpretation of null effects and
interactions very problematic. Whereas the knowledge that floor and ceiling effects should
be avoided may be domain general, the knowledge of how to avoid them is likely to be
domain specific. To examine whether the groups were differentially effective at avoiding
floor and ceiling effects, we coded which experiments produced outcome values that were
all over 90% correct or all less than 10% correct. As expected, none of the Domain-
Experts ever ran an experiment that produced such floor or ceiling extreme outcomes (i.e.,
a priori knowledge helped them avoid extremes). By contrast, 17%, 14%, and 25% of
Task-Experts, High-Ability, and Mid-Ability undergraduates, respectively, produced such
experiments (the differences between groups were not statistically significant). Overall,
most participants were able to avoid such unfortunate outcomes, but only the Experts were
able to avoid them entirely.

Figure 11. The percentage of participants in each group varying the test task variable at any point or
on the first experiment. *, p , .2.
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Making Predictions—Domain-General Skills

After selecting a table structure, the participants were required to make numerical
predictions for all of the cells in their current experiment. We examined the use of general
knowledge about how to make predictions.

Make Caricature Predictions of Interactions.It is usually unnecessary to make precise
quantitative predictions for interactions; instead, caricatures of interactions are usually
sufficient. Occasionally, psychologists (and other scientists) do make precise quantitative
predictions. However, those are always the predictions of precise mathematical or com-
putational theories rather than simple verbal theories such as those under test in this
particular task.

The three basic caricatures of two-way interactions are additive effects, cross-over
interactions, and effect/no-effect interactions (i.e., effect at one level, no effect at another
level). To see whether the groups differed in terms of whether they predicted qualitative
or quantitative interactions, the participants’ predictions for each possible two-way inter-
action in each experiment were classified into one of the three caricatures or a simple
quantitative interaction (i.e., effects are always in the same direction, but the magnitude
of the effect varies). Domain-Experts and Task-Experts were much less likely to predict
simple quantitative interactions than were undergraduates (see Figure 13). Thus, under-
graduates were less likely to use caricatures of effects.

One interpretation of this result is that undergraduates were actually just as likely to try
to make caricature predictions, but their predictions were simply sloppy, especially for
experiments with three or four variables. Arguing against this alternative explanation is

Figure 12. Proportion of participants in each group making value selections that violate a domain-
specific heuristic (chose spacing and delay values in the same range). *, p , .2.
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the fact that there were no group differences in the proportion of additive interactions,
which would be the most likely source of a quantitative interaction produced through
sloppy predictions. However, to further assess this possibility, the analysis was redone
using only the predictions for experiments in which only two variables were manipulated.
Even in the case of the simple experiments, undergraduates made significantly less use of
caricature interactions (see Figure 13).

Interpreting Outcomes—Domain-General Skills

The final task for the participants in this study was to interpret the outcomes of the
experiments they designed. Two types of skills were examined with respect to outcome
interpretation: encoding the basic results of the experiment (i.e., main effects and inter-
actions) and relating the results to the two theories under test.

Encoding Main Effects.A very basic interpretation skill is the ability to correctly
encode main effects from a table of data. One measure of participants’ ability to encode
main effects is the correctness of their final conclusions about each variable. Because not
all participants varied all six variables, this measure was defined as making correct
conclusions conditional on having manipulated that variable at least once. To be coded as
correct, the participant had to specify the correct direction of the effect. Incorrect
responses included “I don’t know”. For all six variables, there were relatively few
differences across groups other than that the Domain-Experts had the highest over-all
performance levels. The differences between groups were not statistically significant. The
means accuracies across all six variables were 94%, 82%, 78%, and 73% for the
Domain-Experts, Task-Experts, High-Ability, and Mid-Ability undergraduates, respectively.

Figure 13. The mean percentage of interactions that were predicted to be quantitative (i.e., not simple
qualitative). ***, p , .01.
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Encoding Interaction Outcomes.Another important general outcome interpretation
skill is the ability to encode interactions. In this task, there were two two-way interactions.
First, there was a quantitative Spacing x Delay interaction, such that the spacing effect was
larger at longer delays. Second, there was an effect/no-effect Spacing x Test Task
interaction, such that there was no spacing effect with stem completion. As with the main
effect analysis, participants’ final hypotheses were coded for correctness on these two
interactions, and only those participants who had conducted the relevant experiments were
included in this analysis. Overall, the Domain-Experts and Task-Experts were equally able
to correctly encode these interactions (see Figure 14). By contrast, the High-Ability
undergraduates were less able to encode the interactions, and the Mid-Ability undergrad-
uates rarely encoded the interactions.

Ignoring Noise Levels.In addition to being able to encode interactions when they exist,
there is also the skill of noting non-interactions (i.e., not being deceived by small levels
of noise). To see whether the groups differed in their ability to note non-interactions, the
participants’ final conclusions were coded for descriptions of non-existent interactions.
The Domain-Experts and Task-Experts almost never made such errors, whereas the
undergraduates made a significant number of such errors (see Figure 14). If one computes
participants’ abilities to encode the existing interactions corrected for false alarms (i.e.,
hits 2 false alarms), the effect of task expertise is quite large. In fact, the undergraduates
show no discriminibility over noise at all.

Make Conclusions in Light of Theories Under Test.After encoding the basic results of
each experiment, the participants should have attempted to relate the experimental
evidence to the theories under test. To investigate potential differences across groups in

Figure 14. The percentage of participants in each group making correct conclusions about each
interaction given opportunity to observe the interaction (Interactions) and percentage of participants
making extraneous interaction conclusions (Noise). *, p , .2.
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this skill, we coded for the presence of conclusions made about the two theories while
interpreting outcomes (during the first experiment or during any experiment).

The Domain-Experts and Task-Experts all mentioned the theories at some point, and
usually mentioned a theory during the interpretation of the first experiment. By contrast,
even the High-Ability undergraduates did not all make any mention of the theories, and
they mentioned theories much less often in interpreting the outcome of the first experiment
(see Figure 15). Thus, it appears that many of the undergraduates did not use the theories
in designing or interpreting the experiments.

Use Evidence in Support of Conclusions about Theories.A general principle in science
is to use empirical evidence to support one’s conclusions. However, research by Kuhn
(1989 and 1991) suggests that many children and adults prefer to rely on theoretical
arguments to justify theories. To examine whether individuals in any of the groups made
such errors in the context of this obviously scientific task, we coded the participants’ final
conclusions about the two theories as to whether their conclusions for either theory relied
exclusively on opinion rather than empirical evidence. A very lax coding criterion was
used: If the participant only referred to their own experience or expectations in making
their conclusions about the two theories, this was coded as relying on opinion; if the
participant referred at all to the experimental results from the task, this was coded as
relying on evidence. Additionally, in making their responses, participants could decline to
make a conclusion about a particular theory. Two undergraduates declined to make
conclusions about either theory and so were not included in this analysis.

None of the Domain-Experts or the Task-Experts relied exclusively on non-empirical

Figure 15. Proportion of participants in each group who mention the theories during outcome
interpretation (during the first experiment or during any experiment). ***, p , .01; **, p , .05; *, for p ,
.2.
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justifications. By contrast, over a third of both the High- and Mid-Ability undergraduates
(.39 and .33, respectively) relied exclusively on non-empirical justifications for at least
one of the theories, which was significantly more often than the experts (p , .05). These
particular results are very important when paired with the failure to mention the theories
during experiment design and interpretation. Specifically, they rule out a plausible
alternative interpretation of those other results: that the undergraduates did not make use
of the theories because they felt they did not understand them. In fact, the undergraduates
appeared to have understood the theories sufficiently well that they could relate the
theories to their own beliefs and experiences and made strong use of this relation.9

In sum, although the undergraduates were just as able to encode the main effects of
each experiment, it appears that many of the undergraduates did not understand the
purpose of experimentation. They did not refer to the theories in designing or interpreting
experiments, and they did not refer to the experiments to justify their conclusions about
the theories.

IV. GENERAL DISCUSSION

The primary goals of this study were to identify new kinds of scientific reasoning skills
and examine their empirical generality. Toward this goal, the results section presents
analyses of group differences on numerous skills. Over-all, consistent patterns across the
skill types seemed to emerge: Domain-Experts differed from Task-Experts primarily in
terms of domain-specific skills, and Experts differed from High-Ability undergraduates
primarily in terms of domain-general skills.

To examine these patterns quantitatively, aggregate, repeated-measures analysis of
variance was conducted across measures of each skill. There were three domain-specific
measures and 10 domain-general measures (one measure per skill). The measure for each
skill that was selected varied from 0 to 1, with 1 reflecting best performance. For some
measures, this was the binary outcome of whether they violated the heuristic or not. For
other measures, it was a proportion (e.g., the proportion of main effects correctly
encoded). In the cases where multiple such measures of the skill existed, either the
measure reflecting initial performance was used, if possible (e.g., mentioning theories in
the design of the first experiment); otherwise an aggregate measure was used. For the 4%
of the data for which a measure was undefined for a given participant (e.g., for encoding
interactions if the relevant interaction experiments were never conducted), the grand mean
for that measure was used.

As Figure 16 reveals, the over-all group effects were quite clear. For domain-specific
skills, the Domain-Experts had very high performance levels, far above the levels of the
other three groups [F(1,36)5 4.74;p , .04], and there were no differences among these
other three groups. For domain-general skills, Domain- and Task-Experts had equally very
high performance levels [F(1,36), 1; p . .8], far above the performance levels of the
High-Ability undergraduates [F(1,36) 5 29.5; p , .0001], who in turn performed only
very slightly better than the Mid-Ability undergraduates [F(1,36)5 1.2;p . .25]. That the
undergraduates’ performance levels were so much lower than the Experts’ performance
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levels demonstrates that these skills were measures of expertise—only the Experts had the
skills. Moreover, the lack of differences between High- and Mid-Ability undergraduates
suggests that the differences could not be attributed to differences in general reasoning
ability.10

In sum, the two Expert groups differed primarily on domain-specific skills, and the
Task-Experts differed from the undergraduates primarily on domain-general skills. Thus,
contrary to a general reasoning ability model or a model in which expertise is highly situated
or domain-specific, it appears that expertise in scientific reasoning consists of both domain-
specific and domain-general skills. Moreover, the domain-generality of these skills can be
predicted by using a simple model that rests on procedural/declarative distinctions.

How dissimilar were the domains of the Domain- and Task-Experts? From the
perspective of a physicist or computer scientist, the domains of expertise (cognitive and
primarily social psychology) may have appeared very similar if not identical; all are
psychology of one form or another. Although there are clear similarities (especially in data
analysis methodologies and in shared coursework at the undergraduate level), it is also
important to note the differences. For example, it is possible to have relatively little shared
coursework. Psychology curricula have very little in the way of particular required classes
and there are many subdomains in psychology. Cognitive and social psychologists,
although typically in the same departments and sharing the same building, attend com-
pletely different conferences and publish in completely different core journals. Most
important, they have different research questions, different theories, and many different
methodologies, although some methodologies are shared. In sum, the comparison is closer
to researchers from different domains than researchers from the same domain who happen
to be interested in different particular issues.

Figure 16. Mean skills performance in each group for domain-general and domain-specific skills in
aggregate.
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The results of this study produced striking similarities to and differences from the
findings of the Voss et al. (1983) and Shraagen (1993) studies. We found, as did Voss et
al. and Shraagen, that the overall quality of solutions was still best for Domain-Experts.
Thus, their results extend to situations in which participants were allowed to iterate
through the discovery process (thereby making use of feedback as they would in actual
scientific tasks). Also similar to both of those previous studies, our study found that there
were many skills that expert scientists share across domains.

In contrast to the previous studies, our study catalogued many additional domain-
general experiment design skills and also added prediction and outcome interpretation
skills. However, much work remains to be done in building a complete model of expertise
in scientific reasoning. For example, our data display task was quite simple, providing
little examination of expertise in this area. It is also important to note that there are many
other tasks within scientific reasoning that were not tapped by our task (e.g., developing
research questions, proposing theories, etc.).

The general pattern of results for the domain-general skills present a picture of
expertise that contrasts with the current view of domain-expertise: that domain-expertise
consists primarily of a large quantity of domain-specific facts, skills, and schemata
acquired only through thousands of hours of practice (e.g., Ericssonet al., 1993; Gobet &
Simon, 1996). Instead, our findings suggest that expertise in some domains may also
consist of many domain-general skills.

How might our results be reconciled with existing models of expertise? A potentially
important factor determining which kinds of experiences and abilities underlie expertise
in a given domain may be the relative familiarity of typical problems seen in the domain.
Many of the previous studies of expertise involved well-defined problem tasks, such as
chess (e.g., Chase & Simon, 1973; Gobet & Simon, 1996), in which good search heuristics
provided little help to the computationally limited human mind, whereas being able to
recognize good problem states (based on previous experience with those states) provided
a strong advantage. Other studies involved giving experts very simple problems that were
highly familiar to them (e.g., Chi & Koeske, 1983; Larkin, 1980), problems which could
also be solved using recognition processes. By contrast, scientific discovery, by definition,
involves tasks that are quite novel to the experts, and thus expertise in such a domain
cannot rely heavily on recognition processes. However, it is likely that there is significant
domain-specific knowledge that experts do need and that was not tapped by our tasks, such
as knowledge of previous theories and experiments in the literature.

This kind of model of expertise for scientific reasoning has several important conse-
quences for artificial intelligence and attempts to automate scientific discoveries (cf.
Valdes-Perez, 1995). The large presence of domain-general skills in our results suggests
that substantial aspects of scientific reasoning could be automated by using computational
programs that are fairly domain-general and, hence, more widely applicable. Towards this
goal, we have identified several general heuristics that scientists use. While some of the
heuristics may appear obvious to many scientists, they were not so obvious to undergrad-
uates. Moreover some of the skills were ones that scientists may not be explicitly aware
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of using (e.g., keep-experiments-simple or keep-general-settings-constant-across-experi-
ments) and, thus, are unlikely to have been included in an artificial intelligence model.

We have presented these domain-general heuristics (and the domain-specific heuristics)
in the form of rules implemented in a production system (Table 1), a framework used in
several previous models of scientific discovery (e.g., Cheng, 1990; Holland, Holyoak,
Nisbett, & Thagard, 1986; Kulkarni & Simon, 1988). This implementation allowed us to
make predictions about the domain-generality of the examined skills. However, other
implementations or conceptions are possible. A more general, alternative conception in
the scientific discovery literature is the search space framework (e.g., Klahr & Dunbar,
1988; Langleyet al., 1987; Schunn & Klahr, 1995 and 1996), in which scientific discovery
is viewed as problem solving in a search space, or several search spaces. The search is
typically for an experiment to conduct, or for a hypothesis that explains, the experiment’s
outcomes. In this conception, the domain-specific and domain-general skills that were
examined here are search heuristics, methods narrowing down selections of particular
experiments or hypotheses. For example, the skill of keeping experiments simple can be
conceived of as a search heuristic that narrows the search to only experiments that are
relatively simple. The domain-generality of these search heuristics is simply cast in terms
of the domains to which they are applicable. The production system framework can be
viewed as a more specific instantiation of problem space search with different emphases.
For the current discussion, the advantage of the production system framework over the
general search space framework is that the former highlights the differences between the
search heuristics themselves (the procedures or productions) and the knowledge that the
search heuristics use (the declarative facts or chunks). For issues of learning, computa-
tional implementation, and transfer of skills to new domains, these differences between
procedural and declarative can prove to be very important.

The results of this study also have educational implications. It appeared that there were
several design and prediction skills that few of even the High-Ability undergraduates had
mastered. At the level of design, the undergraduates made poor values selections for
various variables (e.g., selecting a poor range of values). Given their problems in selecting
experiment features, it was particularly problematic that the undergraduates also violated
the design heuristic of keeping experiments simple. It is possible that the undergraduates
underestimated the difficulty of the task: Schunn (1995) has demonstrated that under-
graduates do regulate the complexity of their experiments according to their expectations
and experiences with task difficulty. At the level of prediction skills, the undergraduates
were less likely to make caricature predictions. This difference may have reflected a poor
understanding of the purpose of the prediction task: to assess the predictability of verbal
theories, which do not make precise quantitative predictions. At the level of interpretation
skills, undergraduates were only marginally less able to encode main effects, but were
much less able to encode interactions and ignore noise levels.

The most striking of the undergraduate differences was the fundamental lack of
appreciation of the purpose of this scientific task: to obtain empirical evidence that could
distinguish between two theoretical accounts of an empirical phenomenon. Counter to the
purpose of the task, many of the undergraduates did not use the theories in designing the
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experiments, nor did they relate the results of the experiments to the theories. Although it
may be that some of these undergraduates thought of the theories but merely did not report
them in the verbal protocols, the lack of mention of the theories in the verbal protocols was
correlated with other differences in the kinds of experiments they designed. Yet, it is also
unlikely that the undergraduates did not mention the theories because they felt they did not
understand them. They understood the theories sufficiently to use theoretical rather than
empirical justifications for their final conclusions for the theories. Moreover, it seems
unlikely that performance differences could be attributed to motivational differences
because those undergraduates not mentioning the theories worked at the task for just as
long as the experts and the other undergraduates.

That the undergraduates frequently relied exclusively on non-empirical justifications
(i.e., personal beliefs) to support their conclusions suggests that these undergraduates have
basic misconceptions about the role of evidence in scientific activity. Kuhn (1989 and
1991) argued that many children and adults have a confusion between theory and
evidence. That they treat the two as the same. Our results are certainly consistent with that
interpretation. However, our results also showed that these undergraduates lacked other
basic domain-general skills, such as keeping experiments simple, and lacked the ability to
interpret main effects and interactions in tables.

In addition to these problems true of all the undergraduates, there were also several
difficulties that were unique to the Mid-Ability undergraduates, but were not apparent in
the overall trends. For example, the Mid-Ability undergraduates were even less likely to
use the theories in designing experiments. The Mid-Ability undergraduates were also
much more likely to violate the domain-general heuristic of holding values constant across
experiments.

In sum, this research has shown that our expert scientists have acquired through their
extensive experiences a broad set of skills that are not specific to their particular research
areas. Moreover, these skills are not just a matter of general reasoning ability and do
transfer to doing research in other related areas.
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NOTES

1. None of the undergraduates had previously taken a psychology research methods course.
2. To simplify the task, we did not describe the full spacing effect, which is an interaction with delay such that

smaller spacing is better at very short delays but longer spacings are better for longer delays.
3. If the participants asked, they were told that there were 20 participants per cell and 20 words per list, which

provided an estimate of the noise levels.
4. If the context was different for each study repetition, then same test context meant same as one of the study

contexts, whereas different test context meant different than any of the study contexts.
5. However, completing the prediction phase was not enforced by the interface, and occasionally participants

conducted an experiment without completing their predictions.
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6. This open-ended formulation of domain-specific skills is due to an implementational freedom: domain-
specific productions can always be written either as implicitly specific to a domain (e.g., the following
production might only be useful in one domain: if Y is true then do Z) or in a more general form that
requires the retrieval of a domain-specific fact (e.g., if facts X and Y are true then do Z).

7. One of the skills, keep-experiments-simple, was thought to be less relevant to the Domain-Experts. For this
skill alone, the Domain-Experts were not combined with the Task-Experts in comparison to the High-
Ability undergraduates.

8. Reliability on this measure and others coded from the verbal protocols was assessed by re-coding 20% of
the data. Reliabilities on all measures was 88% or greater.

9. It is possible that the undergraduates had an incorrect understanding of the theories. In fact, the experts often
differed in their exact interpretation of the theories. However, the analyses were structured so that they did
not depend on a particular interpretation of the theories.

10. Of the eight Domain-General skills for which there were clear effects of Task-Expertise, only three showed
any trend of an effect of reasoning ability (i.e., High- versus Mid-Ability).
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