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Abraham Haskel Taub was born in Chicago, Illinois, on February 1, 1911.
He was educated in Chicago and received his undergraduate degree in math-
ematics at the University of Chicago in 1931. He then went to Princeton
University for his graduate education. At Princeton, his intellectual develop-
ment was deeply affected by his association with H. P. Robertson, O. Veblen,
and J. von Neumann. These outstanding scientists became his mentors and
profoundly influenced the direction of his scientific career.

He worked with Robertson on his doctoral thesis in mathematical cos-
mology (“Dirac Equations in Cosmological Spaces”) and received his Ph.D.
degree in mathematics in 1935. He then moved to the newly established
Institute for Advanced Study in Princeton and worked on differential geom-
etry with Veblen for a year as a postdoctoral fellow. Taub’s first published
paper was with Veblen in 1934 on the projective differentiation of spinors.
Projective relativity theory had been developed by Veblen, Pauli, and others
and was being intensively investigated at the time [1]. The projective theo-
ries are essentially equivalent to the five-dimensional Kaluza-Klein theories
[2]. Six months later, the work of Veblen and Taub was followed by a pa-
per of Taub, Veblen, and von Neumann on the Dirac equation in projective
relativity.

In 1933, Robertson had summarized in the Reviews of Modern Physics
his work on relativistic cosmology using a novel approach based on group
theory. Robertson’s work and independent studies by A.G. Walker have led
to the spatially homogeneous and isotropic Robertson-Walker metric of stan-
dard cosmology. Futhermore, the general relativistic formulation of Dirac’s
equation had been developed by Weyl, Fock, Schrodinger, and Pauli among
others. In lectures delivered at Princeton University in 1934, Schrodinger
had discussed the Dirac equation in the Milne universe, while in 1935 Dirac
had published an equation for the electron in de Sitter universe based on
the embedding of de Sitter space in a flat five-dimensional space. Taub’s



third paper published in 1937 discussed the Dirac equation in the spatially
homogeneous cosmological spaces of Robertson. In this significant work,
Taub showed that his results for de Sitter space were different from Dirac’s.
By this time, Taub had joined the Mathematics Department at the Uni-
versity of Washington in Seattle; there he worked on various mathematical
and physical aspects of spinors and published five further papers on this
subject until 1940. He spent the academic year 1940-1941 on leave at the
Institute for Advanced Study working on general spinor fields. In this area
of research, Taub made basic contributions. He took great pride in this work
and his interest in spinor fields persisted throughout his academic career. He
lectured on this subject at Berkeley and returned fifty years later to active
research on this topic after his retirement.

Abe Taub was professor of mathematics in Seattle until 1948; however,
during this time the war intervened and he was called back to Princeton Uni-
versity to serve as a theoretical physicist during 1942-1945. He did research
work on shock waves in connection with national defense; in fact, he was the
theoretician in an experimental group led by Walker Bleakney of Princeton
University. They worked on shock tubes, which provided a relatively simple
means of studying blast waves. The theory of the shock tube was developed
by Taub. The reflection and refraction of shock waves, unlike the familiar
linear case of light waves, give rise to intrinsically nonlinear phenomena of
Mach reflection and irregular refraction. The oblique reflection of shocks was
discussed by John von Neumann in 1943. Taub worked on the interaction of
shock waves, the oblique refraction of plane shock waves, and the theory of
Mach reflection of a plane shock from a rigid wall, especially the phenomena
associated with the Mach stem. In Mach reflection — in contradistinction
to regular reflection — the reflected shock meets the incident shock at a
triple point (or line) which is some distance from the wall and is joined to it
by a third shock wave (usually curved) called the Mach shock or Mach stem
[3]. The nonlinear theory of this phenomenon is extremely complicated, but
crucial to the understanding of blast waves. Taub therefore continued to
work on these problems after the war and returned in 1947 to the Institute
for Advanced Study in Princeton as a Guggenheim post-service fellow on
leave from the University of Washington.

During this stay in Princeton, Taub also worked on differential geometry
and the groups of motions in Riemannian spaces. Among other things, he
proved a theorem concerning the characterization of conformally flat spaces.
Subsequently, he studied empty spacetimes that admit a three-parameter
group of motions. Searching for a consistent formulation of Mach’s principle
in general relativity, he investigated, for the case of spatially homogeneous



Ricci-flat spacetimes, the general solutions of Killing’s equation for each of
the nine types of transitive three-parameter continuous groups discussed by
Bianchi [4]. The three-dimensional Lie groups that are simply transitive on
homogeneous 3-spaces had been classified by Bianchi in 1897. Taub recog-
nized the significance of Bianchi’s work for constructing cosmological models.
He presented this major work at the International Congress of Mathematics
in 1950, and it was subsequently published in the Annals of Mathematics
in 1951 [Abraham Taub, “Empty Spacetimes Admitting a Three-Parameter
Group of Motions,” Proceedings of the International Congress of Mathe-
maticians (Cambridge, Mass., 1950), p.655; Annals of Mathematics, 53,
pp. 472, 1951; reprinted in Gen. Relativ. Grav. 33, (2001)].

This paper, which is reprinted below, has become a classic. It contains,
among other things, an interesting Ricci-flat solution that is known as the
Taub universe. It is interesting to note that at about the same time and in-
dependently Kurt Godel constructed the first explicit spatially homogeneous
expanding and rotating cosmological models with matter. The discoveries
of Godel and Taub have exerted a profound influence on the subsequent
development of general relativity.

In 1946, Abe Taub received the Presidential Certificate of Merit for his
defense-related work. The main scientific results of this work were pub-
lished in a series of papers in 1946-1951. The theory was confronted with
experiment in two papers with Bleakney (who originated the Mach-Zehnder
interferometric method of studying shock diffraction) and Fletcher in the
Reviews of Modern Physics; the excellent agreement of theory with exper-
iment in most cases must have been a source of immense satisfaction for
Taub, while the few cases of disagreement — such as the Mach reflection
of weak shocks — pointed to the vast complexity of nonlinear dynamics.
In his investigation of these nonlinear phenomena, Taub recognized the sig-
nificance of numerical analysis. Inspired by von Neumann, Taub became a
pioneer in computational hydrodynamics and computer science.

After the war, Taub made very significant contributions to the relativistic
theory of continua. Among his achievements, mention must be made of
the first development of Hamilton’s principle for a perfect fluid and other
variational principles in general relativistic hydrodynamics, the circulation
theorem, the relativistic Rankine-Hugoniot equations, and the stability of
fluid motions in general relativity. As an applied mathematician, he was the
leading authority in relativistic hydrodynamics and his work is indispensable
in relativistic astrophysics.

In 1948, Abe Taub joined a project at the University of Illinois ( as a
research professor of applied mathematics) to build a computer based on



von Neumann’s plans. Taub’s association with computer science had its
roots in his research on hydrodynamics and his collaboration with John von
Neumann. He admired von Neumann’s scientific genius and was the general
editor of his collected works published in six volumes in 1961-1963. Taub was
the chief mathematician associated with this project. The computer, called
ORDVAC, was completed in 1952 and was delivered to the Aberdeen Proving
Grounds. Then a second computer, called ILLIAC, was built; it remained
at Illinois and was the prototype of several other computers. Taub was the
head of the Digital Computer Laboratory at Illinois from 1961 until 1964,
when he became the director of the Computer Center of the University of
California-Berkeley from 1964 until 1968. He was a professor of mathematics
at Berkeley from 1964 until his retirement in 1978. A collection of essays was
published in 1980 to honor Abraham Taub on the occasion of his retirement.
As professor emeritus of mathematics, he remained very active in research
until a few years before his death. He died on August 9, 1999, after a long
illness. He was survived by his wife of 66 years, Cecilia Vaslow Taub, and
their two daughters and one son.

During his distinguished career, Abe Taub had many research students
and postdoctoral associates who have made significant contributions to com-
puter science, applied mathematics, and general relativity theory. The
Berkeley relativity seminars, organized by Taub, provided a lively environ-
ment for discussions of mathematical relativity and Lorentzian geometry.
Taub was a member of a number of important scientific societies and served
on various advisory panels for applied mathematics. He edited a book on
“Studies in Applied Mathematics” (1971) and coedited with S. Fernbach a
book on “Computers and Their Role in the Physical Sciences” (1970).

Taub’s theoretical contributions to general relativity cover a wide range
of important topics including studies in singularities, scale invariance, and
gravitational radiation. Taub’s approach to certain singularity problems in
general relativity was based on the theory of distributions. In this connec-
tion, it is interesting to note that black hole singularities have also been
studied using distributional geometry. Moreover, starting from a theorem
of Laurent Schwartz that a distribution with a single point as support is a
linear combination of Dirac’s delta function together with a finite number
of its derivatives, Taub developed the theory of the motion of test bodies
with multipole moments in general relativity. In particular, he showed that
for a “pole-dipole” particle his approach led to the Mathisson-Papapetrou
equations with the Pirani supplementary condition.

In the field of general relativity, Abraham Taub is best known at present
for pioneering studies of the spatially homogeneous and anisotropic cosmo-



logical models and the discovery of the Taub universe, which is a special
singularity-free and Ricci-flat model given by equations (7.3) and (7.4) of
his famous 1951 paper reprinted below. This two-parameter solution is now
usually represented as !

ds® = —UYdr? + (20U (dvp + cosfdg)? + (7% + £%)(d6? + sin®0dp?), (1)
where U > 0 is given by
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U(r) = —1—|—27_2—+€2, (2)
with constant parameters m > 0 and £ > 0. Here 0 < 0 <7, 0 < ¢ < 27
and 0 < < 4. This metric can be extended across the horizon U = 0 to a
spacetime discovered for unrelated reasons by E.T. Newman, T. Unti, and L.
Tamburino (“NUT”) in 1963 in a form that properly interpreted reduces to
the Schwarzschild metric for £ — 0. The remarkable properties of the Taub-
NUT spacetime were studied by Misner and Taub [5]. The source of the
Taub-NUT solution is a gravitational dyon that consists of a gravitoelectric
monopole (characterized by the mass parameter m) and a gravitomagnetic
monopole (characterized by the Taub-NUT parameter ¢) [6]. The Taub-
NUT solution can be extended to include a cosmological constant[6], or to
include an infinite set of multipole moments pertaining to axisymmetric de-
formations of a rotating source [7]. The Taub-NUT spacetime has had signif-
icant applications in theoretical studies of the spacetime structure in general
relativity and, more recently, in quantum gravity. Its Euclidean extension
is important for the study of monopoles in gauge theories. Embedding the
Taub-NUT gravitational instanton into five-dimensional Kaluza-Klein the-
ory leads to a Kaluza-Klein monopole [8]. Euclidean Taub-NUT spacetimes
have been discussed by a number of authors in connection with monopoles
in supersymmetric gauge theories [9,10]. Further generalizations and exten-
sions of the Taub-NUT spaces are topics of current research.
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